
 

1 

 

 

 

 

Neuronal Dynamics: From Hodgkin-Huxley to FitzHugh-Nagumo Model 

 

 
 
 
 
 
 

Neil Gandhi: A09259792 
Joshua Chu: A09359806 

Adam Li: A09377908 
Sophie Man: A09375793 
Yifan Wu: A097421136 

  



 

2 

 

Neuronal Dynamics 

 

Purpose of Neuronal Dynamic Modeling  

Neurons are regulated on a cellular level by the biophysics of neuronal firing as well as 

on the molecular level by gene regulation. In addition, a network of neurons can interact 

with each other to produce nonlinear dynamics which relate to sensory, motor, and 

behavioral changes. Neurons are unique in their ability to transmit electrical signals over 

long distances, resulting in complex neural circuits, cortical structure, and the central 

nervous system (CNS). By analyzing the system, we can infer macroscopic behavior of 

the organism with applications toward medicine and technology.  

 

Modeling neuronal dynamics has significant medical application. The mechanism 

behind neurological disorders, such as Parkinson’s disease, autism, and epilepsy, are 

not well known but modeling neuronal systems can give insight into the 

neurodegeneration caused by these diseases and possibly ways to cure them.  

 

In addition, modeling neuronal behavior has significant application in the computer 

industry, specifically neuromorphic engineering, which mimics the neuronal dynamics of 

the CNS into VLSI analog circuits. By modeling neuronal dynamics for processing 

purposes, low-power and high efficiency adaptable chip design can be achieved1.  

 

Background and Hodgkin-Huxley Model  

Different mathematical models predict the behavior of neurons but one of the most well-

regarded is the Hodgkin-Huxley (HH) model. This fourth-order system of nonlinear 

differential equations was proposed by Hodgkin and Huxley in 1952 as the culmination 

of experiments that they had performed on giant squid axons. The resulting system 

consisted of one variable describing the membrane potential and three voltage-gating 

variables characterizing the dynamics of different voltage-gated ion channels. Hodgkin 

and Huxley’s model made extensive use of stochastic functions to describe the 

continuous random variables whose values were determined by experimental data. The 

remarkable ability of the model to predict the key biophysical properties of the action 

potential accurately helped Hodgkin and Huxley win the 1963 Nobel Prize in Physiology 

and Medicine at a time when voltage-gated ion channels had yet to be discovered2. 

 

The Hodgkin-Huxley (HH) model studies neurons as dynamic models with 

activation/inactivation of voltage-gated conductances. The HH Model is governed by a 

fourth-order system of nonlinear ordinary differential equations, with the 4 dimensions 

resulting from the membrane voltage and three voltage gating variables. Important 
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elements are the membrane capacitance, the ion-specific conductances and 

electrochemical gradients, and current sources (ion pumps)2.  

 

 

Figure 1: Cells contain a membrane potential, which when depolarized, creates an 

action potential. Here the membrane potential and the ion channels are modeled as 

circuit components (explained in further detail below).  

The lipid bilayer separates the interior of the neuron from its surroundings. Due to the 

potential difference between the inside and outside of this cell, the lipid bilayer can be 

modeled as a membrane capacitance, with the current described by the changing 

electrochemical gradient, as given by  

Ic = Cm
dVm

dt
; 

The current through a given ion channel is 

Ii = gi(Vm − Vi) 

where gi is the variable conductance of that ion channel, Vm is the membrane potential, 

and Vi is the reversal potential of the specific channel. For the Hodgkin-Huxley model, 

these are sodium and potassium channels. In addition, the model takes into account 

leak channels, which are due primarily to chloride transport. 

 

 
Figure 2: The Hodgkin-Huxley model with ion channels represented as conductances 

Gi, membrane potential as Cm, the membrane potential as Vm, and the current as I.  
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The differential equations that describe the biophysical characteristics (ionic currents) of 

action potentials in a neuron are the following. 

Cm dV/dt =  Ip − gkn4(V − Ek) − gNam3h(V − ENa) − gL(V − EL)  

 (1) 

dn/dt = αn(1 − n) − βnn        (2) 

dm/dt = αm(1 − m) − βmm       

 (3) 

dh/dt = αh(1 − h) − βhh        (4) 

Action potentials within neurons arise from time-variant and voltage-dependent changes 

in the conductance of neural membrane to specific ions. The ionic current is divided into 

components carried by sodium and potassium ions (INa and IK) and a small leakage 

current (Ii) made up on chloride and other ions. Each component of the ionic current is 

determined by a driving force which may be measured as an electrical potential 

difference and a permeability coefficient which has the dimensions of conductance. The 

changes in permeability depend on membrane potential as do gNa and gK, suggesting 

that permeability changes arise from effect of electric field2,3.   

 

Aim 

Our goal is to investigate neural dynamics by examining the phase portraits, 

bifurcations, nullclines, and vector field that result when certain parameters are 

adjusted, such as injected current. We then adapt the model in application toward a 

neurological disorder, namely epilepsy, in an attempt to gain understanding on how the 

disease differs from normal neuronal firing.  

 

HH Model Simulation: 

Giant squid axon data from Hodgkin and Huxley’s original experiments were used, with 

these values shown in Table 1.2 

 
Table 1: Shows values for parameters in the Hodgkin-Huxley model for a giant squid. 

 

Figure 3 shows the simulation results for the full 4D HH model. By solving the system of 

nonlinear ODEs using the Euler method, one can simulate the results of the Hodgkin-

Huxley model. Beginning at 0ms, model is stimulated by a single current spike until 5 

ms, then the current is set to 0 mA until 20ms. Staring at 20ms, 50 mA of current is 

continually applied until 100 ms. The figure depicts the membrane potentials well as the 

potassium and sodium conductances is shown in Figure 3. As illustrated in figure below, 

potassium channel opens first then follows the sodium channel. In addition, with the 
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continuous stimulation, the neuron does not have sufficient time to restore the 

electrochemical gradient. Therefore, subsequent depolarizations are reduced in 

magnitude.  

 
Figure 3. Simulation of HH model using giant squid neuron parameters. a. membrane 

potential change with stimulation. b. potassium and sodium conductances respond.  

 

Figure 4 depicts the same Hodgkin-Huxley model but when the applied current is only 2 

mA. This input current is below the threshold required for an action potential. Therefore, 

a small depolarization or perturbation in the positive direction is witnessed, but the 

membrane potential very quickly to resting potential. It is interesting to note that in this 

case, the resting potential acts as a stable fixed point. The oscillatory motion about the 

fixed point can be characterized as a damped oscillation, which occurs when the 

damping ratio is between 0 and 1st in 2nd order or higher systems.  
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Figure 4. Membrane potential and ion channel conductances responding 2mA current 

stimulation. a. Membrane voltage. b. Potassium and sodium conductance. 

 

Simplification of HH Model: 

The full 4D HH model gives the most accurate representation of the time series for the 

membrane potential and voltage gating variables. However, it is difficult to understand 

graphically the qualitative dynamics of the entire system, particularly because only 

projections of the system can be visualized on a 2D or 3D plane. Fortunately the 4D HH 

model can be simplified without sacrificing the overall qualitative features of the original 

system. This would allow easier use of different analytical and graphical tools such as 

nullclines and bifurcation points, in order to analyze the qualitative states that the 

system can take.  

 

The first level of simplification stems from empirical data gathered by Krinskii and 

Kokoz, who have shown that the potassium activation and sodium inactivation gates, ‘n’ 

and ‘h’, respectively, add up to 0.8, or n+h = 0.8 in equation (1). Moreover, since Na+ 

gate kinetics are fast compared to the K+ gate, we can assume that the Na+ gating 

variable m is at its steady state level (m∞), although this is still dependent on the 

membrane potential. Thus the final differential equations for the reduced HH model is a 

2D system consisting of the membrane potential and potassium gate variable3. 

Cm
dV

dt
= −gNan4(V − VK) − gNam∞

3 (V)(0.8 − n)(V − VNa) − gL(V − VL) + Iappl; (5) 

nω(V)
dn

dt
= n∞(V) − n         (6)           

A comparison between the reduced HH model and the original shows that the reduced 

model responds faster to the stimulus (Figure 5). This is to be expected since the Na+ 
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gating variable m was assumed to be at its steady state levels for all time. Although the 

two responses are not identical, the shapes of their waveforms are sufficiently similar to 

warrant the use of a 2D reduced system instead of the original 4D model.  

 
Figure 5. Membrane potential response for original HH model and reduced model for 

single current stimulation.  

 

FitzHugh-Nagumo Model Characterization/Simulation: 

The FitzHugh-Nagumo (FHN) model mimics the Hodgkin-Huxley model in a simplified 

manner by approximating the action potentials via cubic nullclines. The parameter ′α′ 

defines the shape of the cubic function and is the threshold for excitability, ‘b’ represents 

the excitability and ‘c’ is a parameter that can change the kinetics of the recovery 

variable. The equations below show the V-nullcline has the shape of a cubic function 

and the n-nullcline in equation (5) and (6) could be approximated by a straight line, 

suggesting that the polynomial model can be reduced3,5:  
dυ

dt
= υ(υ − α)(1 − υ) − ω + I        (7) 

dω

dt
= b(υ − cω)          (8) 

where υis the membrane potential, ωis the ion gating variable and I is the stimulation 

current. For the giant squid axon, α=0.15, b=0.01 and c=0.02. 

 

Fixed Points/Phase Portrait Analysis: 

Using the FHN model, the v- and w-nullclines can be plotted, shown in Figure 6. The v-

nullcline is the third order polynomial, and the w-nullcline is the straight line, with the 

vector field superimposed on the nullclines to show the trajectory of the phase portrait. 

Fixed points are determined as the intersection of the two nullclines. With initial 

conditions of a = 0.1, b= 0.01, and c = 0.1, three fixed points exist. Through visual 

inspection of the nullclines, one can see that the number of fixed points can be 1, 2, or 

3, depending on the values of the parameters, which indicates the presence of 
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bifurcations. Graphically, a changes the shape of the υ-nullcline, and b and c change 

the slope of the ω-nullcline. 

 
Figure 6: The nullclines are plotted along with the vector field. The three intersections 

correspond to three fixed points and the circular movement of the vector field indicates 

a limit cycle.  

 

Bifurcations: 

The Fitzhugh model as well as the Hodgkin-Huxley model exhibit the supercritical Hopf 

bifurcation. A Hopf bifurcation occurs when eigenvalues cross the imaginary axis as 

some some parameter μ varies. In this case, the parameter is the applied current. At the 

Hopf bifurcation, a stable spiral fixed point becomes an unstable fixed point and is 

surrounded by a closed orbit called the limit cycle. If the applied current is lower the 

critical value, μc, the system oscillates a little, then dampens to the original resting 

potential. This is represented by a stable spiral fixed point. When the applied current is 

increased greater than μc, sustained spiking occurs, which is described by the 

convergence of the unstable spiral to the limit cycle. 

 

In Figure 7a,b, the simulations show a bifurcation occurring. Specifically, this shows a 

limit cycle disappearing on the phase portrait as the parameter a changes, where a is a 

parameter that affects the kinetic gating variables of the ion channels. In Figure 4a-b, 

we see the dynamics of the action potential changing in not only the phase diagram, but 

also the actual firing behavior. Increasing a from its initial value of 0.1 makes it more 

difficult for the external stimulus to produce an excitation until no activation is produced. 

We can test this experimentally by changing the ion concentrations within the cell, 
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therefore changing the threshold for excitability, and run trials at different points to 

validate this model. 

 

 

 

Figure 7a: These are phase portraits of ω vs υ. A bifurcation occurs as well as seen 

when the limit cycle becomes a stable spiral fixed point. 

 
Figure 7b: This figure shows the different simulations of voltage vs. time with the varying 

parameter, a. A bifurcation occurs when the oscillatory behavior changes to a 

dampened one. 
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Although the bifurcations could be visualized with a set of different phase portraits and 

time courses, we wanted to solve numerically for the eigenvectors as the parameters a, 

b, and c were varied. The Jacobian used to find these eigenvalues was  

 
Table 2 below shows these eigenvalues. Notice that the majority of the eigenvalues are 

complex-valued; thus, some sort of cyclic behavior or spiral is to be expected. It should 

be noted that only one parameter was varied at a time in order to isolate the effect of 

that particular parameter. For example, if a was varied, all other parameters were held 

constant. 

Table 2: Sample of varying eigenvalues corresponding to the 3 different figures shown 

below. Input values as a default were a=0.15, b=0.01, c=0.01 and I0 = 0.1 (input 

current). The parameters were then varied one at a time. 
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Figures 8, 9, 10: These two rows of figures shows on the left, the phase portrait and the 

behavior of the dynamical system. The right hand side shows the time courses of v and 

w. These are corresponding to the 10 different eigenvalues in Table 2. Figure 8 shows 

the dynamics when parameter a is varied; Figures 9 and 10 show likewise when b and c 

are varied, respectively. 

 

The above graphs are consistent with what we know about the FHN model. The 

parameter a defines the threshold of excitability; therefore, raising a will make it more 

difficult to elicit sustained oscillations. The phase portrait in Figure 8 confirms this 

phenomenon, since the limit cycle disappears and υ and ω decay to zero as a 
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increases. The individual decays of υ and ω are evident in their time courses shown in 

Figure 8.  

 

The ω nullcline is defined by ω = b/c*υ; therefore, changing b and c will change the 

slope of the line. An increase in b corresponds to a steeper slope. As graphically 

visualized in Figure 6, this will cause the w-nullcline to intersect the υ-nullcline 

eventually in one location instead of three. Thus, as b increases, the number of fixed 

points decreases. This is confirmed in Figure 9 by the disappearance of the limit cycle 

and the decay of the υ and ω time courses to 0.  

 

Increasing c has the opposite effect of b, as c decrease the slope of the ω-nullcline. 

Graphically, this can be seen in Figure 6; as the ω-nullcline flattens out, more 

intersections between the υ- and ω-nullclines become possible. Thus, the number of 

fixed points increases from 1 to 3. Similar to parameters a and b, this phenomenon is 

confirmed in the phase portraits and time courses in Figure 10. Specifically, a limit cycle 

appears at the critical value of c (the c bifurcation point) and sustained oscillations of υ 

become possible.  

 

Clinical Application of Neuronal Modeling 

Epilepsy is a neurological disorder which is characterized by seizures and it affects 65 

million people worldwide8. Mechanistically, the neurons fire non-synchronously which 

causes temporary cognitive impairment and loss of motor coordination. This is due to 

excessive excitatory response due to a mutation in the potassium ion channel in the 

central nervous system (CNS)7. The potassium channel has a loss of functionality which 

induces it to lose conductivity as defined by the neuron model. The following figure 

showcases the result of losing potassium ion channel conductivity. As a continuous 

current is applied, the membrane potential of the neuron does not return to resting 

potential, due to the lack of potassium out-flux7.  
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Figure 11: The loss of functionality of the the potassium ion channel causes the neuron 

to not recover the electrochemical potential. Therefore in application of a continuous 

current, a constant depolarization is seen.  

 

Figure 12a,b: Varying the parameter ‘c’ in order to change the ion channel recovery 

kinetics. The limit cycle and stable oscillations disappear when recovery is slowed.  

As the parameter ‘c’ increases, the overall kinetics of the membrane potential is slowed.  

 

Therefore, the potassium ion channel cannot respond quickly enough to repolarize the 

membrane. As seen in Figure 12a, the increasing ‘c’ parameter makes the limit cycle 

disappear, indicating that the oscillatory motion of the action potential is no longer 

occurring. This is relevant to the physiological phenomenon of epilepsy during a 

seizure, a steady and stable limit cycle is nonexistent. Figure 12b show the time course 

as a function of ‘c’. As ‘c’ increases, the oscillatory motion decreases and hyper-

excitability is induced.  

 

However, there are inherent limitations in utilizing the FitzHugh-Nagumo model for this 

purpose as all the kinetic recovery variables associated with all ion channels are 
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grouped in one variable, ‘ω’. Therefore, it is difficult to isolate the functionality of solely 

the potassium channel.  

 

In addition, because there is a lack of recovery in the system, the model would lose the 

stable fixed point at the resting potential. In addition, the stable limit cycle that appears 

after the current reaches a certain threshold for action potential is now nonexistent.  

 

Conclusion 

There are inherent tradeoffs when analyzing multi-dimensional nonlinear systems. High 

order systems, such as the Hodgkin-Huxley model, approximate neuronal firing more 

accurately, yet are difficult to understand from a qualitative standpoint. However, lower 

order systems, such as the FitzHugh-Nagumo Model, are easier to interpret 

qualitatively, yet can lack precision needed when manipulating specific parameters, 

such as potassium channels for epilepsy. Most likely, a combination of models will have 

to be used to understand the neuronal dynamics and to find the balance between 

accuracy and feasibility.  
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