causal_networkx.ci.PartialCorrelation#
- class causal_networkx.ci.PartialCorrelation(method='analytic', fixed_threshold=0.1, bootstrap_n_samples=1000, random_state=None, block_length=1, verbose=False)[source]#
Methods
compute_significance
(val, array, n_samples, ...)Compute pvalue of the partial correlation using bootstrap sampling.
test
(df, x_var, y_var[, z_covariates])Perform CI test of X, Y given optionally Z.
- compute_significance(val, array, n_samples, n_dims, sig_override=None)[source]#
Compute pvalue of the partial correlation using bootstrap sampling.
Returns the p-value from whichever significance function is specified for this test. If an override is used, then it will call a different function then specified by self.significance
- Parameters:
val :
float
Test statistic value.
array : array_like
data array with X, Y, Z in rows and observations in columns
n_samples :
int
Sample length
n_dims :
int
Dimensionality, ie, number of features.
sig_override :
str
Must be in ‘analytic’, ‘shuffle_test’, ‘fixed_thres’
- Returns:
-
P-value.